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PROBLEM DEFINITION

This research involves the development of a knowledge-based
fault-tolerant flight control system. The objective is to design
a control system capable of accommodating a wide range of time-
critical aircraft failures, including actuator, sensor, and
structural failures. A software architecture is presented that
integrates quantitative analytical redundancy techniques and
heuristic expert system problem-solving concepts for the purpose
of in-flight, real-time failure accommodation.

The overall Jjob of failure accommodation is broken down into
five main tasks: executive control, failure detection, failure
diagnosis, failure model estimation, and reconfiguration. The
executive control task provides continual dynamic¢ state
estimation, feedback control calculations, and synchronization of
the remaining tasks. The failure detection task monitors
aircraft behavior and detects significant abnormalities. Failure
diagnosis finds a 1list of aircraft components most likely to have
caused the problem, while the failure model estimation task
generates a mathematical model of the aircraft dynamices that
reflects changes due to the failure. Finally, the
reconfiguration task determines what action should be taken to
correct the situation.

In order to carry out its assigned tasks, the control systen
uses as building blocks powerful analytical techniques developed
within the state-space environment of modern control theory. For
example, the executive control task employs a Kalman Filter and a
Linear-Quadratic BRegulator for estimation and control.
Innovation-based and Multiple Model algorithms are used in
failure detection and failure model estimation, respectively.
Additionally, a weighted 1left pseudo-inverse procedure 1is
available for reconfiguration if needed. These quantitative
methods provide effective solutions to certain aspects of the
failure accommodation problem,.
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Because they are computationally intensive, however, these
algorithms must be used judiciously if real-time fault-tolerance
ultimately is to be achieved. Efficient scheduling and
selection of tasks and subtasks thus becomes an overriding
control system design factor. Moreover, these quantitative
algorithms do not reflect the type of problem solving performed
by pilots. For these reasons, the control system will benefit
from the incorperation of a qualitative, heuristic reasoning
capability. The research described here uses artificial
intelligence techniques to combine the strengths of quantitative
and qualitative reasoning for fault-tolerant flight control.

FAILURE ACCOMMODATION TASK SAMPLE

RECEIVE SENSOR MEASUREMENTS DETECT FAILURE DETERMINE NUMBER OF
STUCK CONTROLS

SELECT MODEL AND GAINS DIAGNOSE FAILURE SELECT LQR GAINS

ESTIMATE DYNAMIC STATES ESTIMATE FAILURE MODEL DETERMINE NUMBER OF

STUCK SENSORS

CALCULATE CONTROL COMMANDS RECONFIGURE MODEL AND GAINS SELECT KALMAN GAINS

SEND CONTROL COMMANDS




EXPERT SYSTEM DESCRIPTION

A rule-based backward-chaining expert systems approach 1is
used to transform the problem of failure accommodation into a

problem of search.

The expert system is composed of a knowledge

base and an inference engine. The knowledge base contains

parameters that represent important variables and rules that
relate parameters in the form of IF <PREMISE> THEN <ACTION>

clauses.

RULE-EOQ2

RULE-EO4

RULE-E07

RULE-E08

RULE-E09

RULE-E10

EXECUTIVE CONTROL KNOWLEDGE BASE SAMPLE

IF

IF

IF

IF
THEN

CONTROL COMMANDS ARE CALCULATED
SEND CONTROL COMMANDS.

TRIM CONTROL COMMANDS ARE CALCULATED
AND PERTURBATION CONTROL COMMANDS ARE CALCULATED
CALCULATE CONTIROL COMMANDS.

MODEL, CONTIROLLER, AND ESTIMATOR ARE READY
AND DYNAMIC STATES ARE ESTIMATED
CALCULATE PERTURBATION CONTROL COMMANDS.

MODEL, CONTROLLER, AND ESTIMATOR ARE READY
AND SENSOR MEASUREMENTS ARE RECEIVED
ESTIMATE DYNAMIC STATES.

THIS RULE IS BEING TESTED
RECEIVE SENSOR MEASUREMENTS.

RECONFIGURATION IS NOT REQUESTED
MODEL, CONTROLLER, AND ESTIMATOR ARE READY.
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e EXECUTIVE CONTROL KNOWLEDGE BASE
~ 3
ORIGINAL PAGE 1‘[.,3{ AT 1
[I/O ITERATION FINISHED
UE
. /\ v
{CONTROL _COMMANDS_SENT | [INDICATOR _COMMANDS SENT ]
TRUE TRUE
TRUE TRUE
[CONTROL_COMMANDS_CALCULATED] {INDICATOR COMMANDS CALCULATED ]
TRUE TRUE
k//g>-~\\-\\\§\\\\> p
TRUE TRUE
TRIM COMMANDS PERTURBATION COMMANDS
CALCULATED CALCULATED
TRUE TRUE
TRUE
DYNAMIC STATES
ESTIMATED
TRUE
N ¥ /\mUE
MODEL, CONTROLLER, AND SENSOR MEASUREMENTS
ESTIMATOR READY RECEIVED
TRUE
)
EXECUTIVE CONTROL KNOWLEDGE BASE
(PART 1I)
[MODEL, CONTROLLER, AND
ESTIMATOR READY
TRUE
FALSF, _TRUE FALSE  TRUE TRUE
RECONF IGURATION RECONF IGURATION I RECONE IGURATION
REQUESTED DETERMINED IMPLEMENTED
FALSE TRUE FALSE TRUE TRUE
) L)
NONE _NEW
FAILURE_MODEL
NONE NEW
FALSE TRUE EALSE " TRUE
FAILURE MODEL FAILURE MODEL
REQUESTED ESTIMATED
FALSE TRUE FALSE TRUE
)
NONE__NEW.
[EAILURE DIAGNOSIS |
NONE NEW
EALSE Tﬁﬁgiz::fz><:fz::7;;Z§E‘ TRUE
FAILURE DIAGNOSIS [[FATLURE DIAGNOSED ]
REQUESTED FALSE TRUE
FALSE TRUE )
NONE _ NEW
[(EAILURE DETECTION |
NONE NEW
TRUE ‘f”‘44;><:;\\ﬁ> FALSE TRUE
FATLURE DETECTION [FATLURE DETECTED ]
REQUESTED FALSE TRUE
TRUE X °




ORIGINAL PAGE IS
IHE INFERENCE ENGINE OE POOR QUA!TY

The inference engine applies a given set of rules to problem-
specific data assigned to parameters. With all non-initialized
parameter values assumed unknown, the act of trying to infer the
value of a parameter, such as I/0-1ITERATION-FINISHED, begins
the search process. The estimation, control, and analytical
redundancy algorithms reside as procedures in the actions of
relevant rules, being executed when needed during the search.
Presently, the knowledge base contains nearly 80 parameters and
over 100 rules. )

DETERMINE VALUE OF <PARAMETER> TEST <RULE>

DETERMINE VALUE OF
NEXT PREMISE PARAMETER
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KNOWLEDGE BASE CONTENTS

MAJOR SUBTASKS

KALMAN FILTER
LINEAR QUADRATIC REGULATOR

NORMALIZED INNOVATIONS MONITOR
SIGNAL DEPENDENCY SEARCH
(TO BE INCLUDED)
MULTIPLE MODEL ALGORITHM

LEFT PSEUDO-TNVERSE

FORE
COLLECTIVE

TASK PARAMETERS  RULES
EXECUTIVE CONTROL 23 31
FAILURE DETECTION 8 12
FAILURE DIAGNOSIS 2 1
FAILURE MODEL ESTIMATION 14 20
RECONF IGURATION 31 37
CH-47 CONTROL VECTOR DEFINITION
| -
AFT
COLLECTIVE




SIMULATION RESULTS

Control system performance is evaluated through ground-based
simulations of in-flight failures. Using a linear discrete
deterministic dynamic model of a Boeing CH-47 tandem-rotor
helicopter, the effect of biased and stuck sensors and controls
is investigated.

Failures are injected into the aircraft model at the 1.0 sec
point of the simulation. When a sliding average of the nominal
estimator normalized tracking error exceeds a preset threshold,
the control system declares that a failure exists. Because rules
for autonomous failure diagnosis and failure model hypothesis
generation have yet to be included, the control system 1is given
four failure model hypotheses at the end of time allotted for
diagnosis, These hypotheses, to be used in the failure model
estimation Multiple Model Algorithm, include the hypothesis
representing no failure, the hypothesis representing the actual
failure, and two hypotheses reflecting half and double the actual
failure mode specification.

In order to simulate eventual parallel processing on a single-
processor computer, the asynchronous tasks of failure diagnosis
and reconfiguration are artificially delayed 0.5 sec each, thus
simulating 0.5 sec task completion times. Executive control,
failure detection, and failure model estimation, on the other
hand, are all designed to cycle through one full search per
sampling interval, and therefore incur no artificial delay.

The scheduling and selection of quantitative tasks occurs
inherently within the expert system search process. A measure of
the amount of search effort required to accomplish this
scheduling and selection is indicated by the number of rules
tested versus the number of parameters set during the search.
Prior to beginning the search, all parameters without an initial
value are assumed unknown. Rules are tested in an effort to set
parameters, ultimately setting the top-level goal parameter.
With a normalized search workload defined as the number of rules
tested divided by the number of parameters set, it can be seen
that tasks stressing selection over scheduling incur a higher
workload, representing a lower search efficiency.
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SIMULATED ACCOMMODATION OF BIASED CONTROL:
IONGITUDINAL STATE & CONTROL TIME HISTORIES
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SIMULATED ACCOMMODATION OF BIASED CONTROL:
FAILURE DETECTION AND FAILURE MODEL ESTIMATION
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SIMULATED ACCOMMODATION OF BIASED SENSOR:
LONGITUDINAL STATE & CONTROL TIME HISTORIES
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SIMULATED ACCOMMODATION OF BIASED SENSOR:
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SIMULATED ACCOMMODATION OF STUCK CONTROL
LONGITUDINAL STATE & CONTROL TIME HISTORIES
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SIMULATED ACCOMMODATION OF STUCK CONTROL:
FAILURE DETECTION & FAILURE MODEL ESTIMATION
SEARCH RESULT TIME HISTORIES
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SIMULATED ACCOMMODATION OF S$TUCK SENSOR:
LONGITUDINAL STATE & CONTROL TIME HISTORIES
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SIMULATED ACCOMMODATION OF STUCK SENSOR:
FAILURE DETECTION & FAILURE MODEL ESTIMATION
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RESPONSE IO FALSE ALARM

A failure detection mechanism should be sensitive to dynamic
abnormalities, yet have a low false alarm rate. Should a false
alarm occur, however, the control system must be able to
recognize that a mistake has been made without compounding the
problem. Simulations producing a false alarm immediately
following reconfiguration for a stuck sensor demonstrate this
ability in the proposed control systen. By estimating the
failure model to be the one corresponding to the no-failure
hypothesis, the expert system recognizes the mistake and
effectively suppresses any improper corrective action that might
have otherwise taken place.

STUCK SENSOR & FALSE ALARM
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An expert systems approach to fault-tolerant flight control
utilizing a rule-based backward~-chaining search mechanism is an
effective way to combine heuristic and analytical techniques. It
allows the scheduling and selection of tasks to occur naturally
within the action of rules, permits efficient flow of information
between tasks, and allows the control system to be built
incrementally.

Although at an early stage of development, the control system
performs well and appears to provide an architecture suited to
the difficult Jjob of failure accommodation. The issues of
failure diagnosis, paraliel processing, and accommodaticn of
additional failure modes are to be addressed next.

EXPERT SYSTEMS APPROACH ALLOWS

® NATURAL SCHEDULING AND SELECTION OF
FAILURE-ACCOMMODATION TASKS

® EFFICIENT FLOW OF INFORMATION BETWEEN TASKS

® INCREMENTAL CONTROL SYSTEM GROWTH
DURING DEVELOPMENT
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